A two-body floating system is considered. The above iron ball undergoes a magnetic force generated by a current. A CuZn ball below is attached to that iron ball by a spring with the spring constant kf.
simulation.py
import numpy as np
import system_model
from scipy.integrate import solve_ivp
from ackrep_core import ResultContainer
from ackrep_core.system_model_management import save_plot_in_dir
import matplotlib.pyplot as plt
import os
# link to documentation with examples:
#
def simulate():
"""
simulate the system model with scipy.integrate.solve_ivp
:return: result of solve_ivp, might contains input function
"""
model = system_model.Model()
rhs_xx_pp_symb = model.get_rhs_symbolic()
print("Computational Equations:\n")
for i, eq in enumerate(rhs_xx_pp_symb):
print(f"dot_x{i+1} =", eq)
rhs = model.get_rhs_func()
# ---------start of edit section--------------------------------------
# initial state values
xx0 = [0.02, 0.02, 0, 0] # 0.02, 0.052, 0, 0]
t_end = 2
tt = np.linspace(0, t_end, 10000)
simulation_data = solve_ivp(rhs, (0, t_end), xx0, t_eval=tt)
# ---------end of edit section----------------------------------------
save_plot(simulation_data)
return simulation_data
def save_plot(simulation_data):
"""
plot your data and save the plot
access to data via: simulation_data.t array of time values
simulation_data.y array of data components
simulation_data.uu array of input values
:param simulation_data: simulation_data of system_model
:return: None
"""
# ---------start of edit section--------------------------------------
# plot of your data
plt.plot(simulation_data.t, simulation_data.y[0], label="position of the iron ball in x-direction")
plt.plot(simulation_data.t, simulation_data.y[1], label="position of the brass ball in x-direction")
plt.plot(simulation_data.t, simulation_data.y[2], label="velocity of the iron ball in x-direction")
plt.plot(simulation_data.t, simulation_data.y[3], label="velocity of the brass ball in x-direction")
plt.xlabel("Time [s]") # x-label
plt.grid()
plt.legend()
# ---------end of edit section----------------------------------------
plt.tight_layout()
save_plot_in_dir()
def evaluate_simulation(simulation_data):
"""
assert that the simulation results are as expected
:param simulation_data: simulation_data of system_model
:return:
"""
# ---------start of edit section--------------------------------------
# fill in final states of simulation to check your model
# simulation_data.y[i][-1]
expected_final_state = [14.623557063331738, 14.696058924396356, 16.881612845239694, 16.981880259096393]
# ---------end of edit section----------------------------------------
rc = ResultContainer(score=1.0)
simulated_final_state = simulation_data.y[:, -1]
rc.final_state_errors = [
simulated_final_state[i] - expected_final_state[i] for i in np.arange(0, len(simulated_final_state))
]
rc.success = np.allclose(expected_final_state, simulated_final_state, rtol=0, atol=1e-2)
return rc
system_model.py
import sympy as sp
import symbtools as st
import importlib
import sys, os
# from ipydex import IPS, activate_ips_on_exception
from ackrep_core.system_model_management import GenericModel, import_parameters
# Import parameter_file
params = import_parameters()
# link to documentation with examples:
#
class Model(GenericModel):
def initialize(self):
"""
this function is called by the constructor of GenericModel
:return: None
"""
# ---------start of edit section--------------------------------------
# Define number of inputs -- MODEL DEPENDENT
self.u_dim = 1
# Set "sys_dim" to constant value, if system dimension is constant
self.sys_dim = 4
# ---------end of edit section----------------------------------------
# check existence of params file
self.has_params = True
self.params = params
# ----------- SET DEFAULT INPUT FUNCTION ---------- #
# --------------- Only for non-autonomous Systems
def uu_default_func(self):
"""
define input function
:return:(function with 2 args - t, xx_nv) default input function
"""
# T = 10
# f1 = 0.2 * sp.sin(self.t_symb) + 0.74
# u_num_func = st.expr_to_func(self.t_symb, f1)
# ---------start of edit section--------------------------------------
def uu_rhs(t, xx_nv):
"""
sequence of numerical input values
:param t:(scalar or vector) time
:param xx_nv:(vector or array of vectors) numeric state vector
:return:(list) numeric inputs
"""
# u = u_num_func(t)
# u = 0.745
if t < 0.25:
u = 8.877
else:
u = 0.7
return [u]
# ---------end of edit section----------------------------------------
return uu_rhs
# ----------- SYMBOLIC RHS FUNCTION ---------- #
def get_rhs_symbolic(self):
"""
define symbolic rhs function
:return: matrix of symbolic rhs-functions
"""
if self.dxx_dt_symb is not None:
return self.dxx_dt_symb
# ---------start of edit section--------------------------------------
x1, x2, x3, x4 = self.xx_symb # state components
m1, m2, k1, k2, kf, g = self.pp_symb # parameters
u1 = self.uu_symb[0] # inputs
# define symbolic rhs functions
dx1_dt = x3
dx2_dt = x4
dx3_dt = (g * m1 - u1 * k1 / (k2 + x1) ** 2 - kf * (x1 - x2)) / m1
dx4_dt = (g * m2 + kf * (x1 - x2)) / m2
# rhs functions list
self.dxx_dt_symb = sp.Matrix([dx1_dt, dx2_dt, dx3_dt, dx4_dt])
# ---------end of edit section----------------------------------------
return self.dxx_dt_symb
parameters.py
import sys
import os
import numpy as np
import sympy as sp
import tabulate as tab
# link to documentation with examples:
#
# set model name
model_name = "Two Mass Floating Bodies"
# ---------- create symbolic parameters
pp_symb = [m1, m2, k1, k2, kf, g] = sp.symbols("m1, m2, k1, k2, kf, g", real=True)
# ---------- create symbolic parameter functions
# parameter values can be constant/fixed values OR set in relation to other parameters (for example: a = 2*b)
m1_sf = 0.05 # mass of the iron ball in kg
m2_sf = 0.04 # mass of the brass ball in kg
k1_sf = 4e-5 # geometry constant
k2_sf = 0.005 # air gap of magnet in m
kf_sf = 10 # Spring constant in N/m
g_sf = 9.8 # acceleration of gravity in m/s^2
# list of symbolic parameter functions
# tailing "_sf" stands for "symbolic parameter function"
pp_sf = [m1_sf, m2_sf, k1_sf, k2_sf, kf_sf, g_sf]
# ---------- list for substitution
# -- entries are tuples like: (independent symbolic parameter, numerical value)
pp_subs_list = []
# OPTONAL: Dictionary which defines how certain variables shall be written
# in the table - key: Symbolic Variable, Value: LaTeX Representation/Code
# useful for example for complex variables: {Z: r"\underline{Z}"}
latex_names = {}
# ---------- Define LaTeX table
# Define table header
# DON'T CHANGE FOLLOWING ENTRIES: "Symbol", "Value"
tabular_header = ["Parameter Name", "Symbol", "Value", "Unit"]
# Define column text alignments
col_alignment = ["left", "center", "left", "center"]
# Define Entries of all columns before the Symbol-Column
# --- Entries need to be latex code
col_1 = [
"mass of the iron ball",
"mass of the brass ball",
"geometry constant",
"air gap of magnet",
"spring constant",
"acceleration of gravity",
]
# contains all lists of the columns before the "Symbol" Column
# --- Empty list, if there are no columns before the "Symbol" Column
start_columns_list = [col_1]
# Define Entries of the columns after the Value-Column
# --- Entries need to be latex code
col_4 = ["kg", "kg", "", "m", r"$\frac{N}{m}$", r"$\frac{m}{s^2}$"]
# contains all lists of columns after the FIX ENTRIES
# --- Empty list, if there are no columns after the "Value" column
end_columns_list = [col_4]