JE2 Aero engine control "Multivariable feedback control Analysis and design" S. Skogestad and I. Postlethwaite John Wiley and Sons, 1996, Section 12.3.3 Note Matlab files http//www.nt.ntnu.no/users/skoge/book/matlab.html stored in /export/home/leibfr/Lipinski/matlab/.. ..Examples_Multi_Feedback_Control/matlab_m/ F. Leibfritz, 16.09.2003 Data matrices generated by Sec12_33.m in directory above on Laptop save Aero_Engine a b c d A_Hinf B1 B2 C1 C2 D11 D12 D21 D22 a b c d -- data set G5 ==> [a,b,c,d]=unpckW2GWpbar F. Leibfritz, 07.03.2005 renamed to A_je2=a B_je2=b C_je2=c D_je2=d
simulation.py
# This file was autogenerated from the template: simulation.py.template (2022-10-10 15:53:27).
import numpy as np
import system_model
from scipy.integrate import solve_ivp, odeint
from ackrep_core import ResultContainer
from ackrep_core.system_model_management import save_plot_in_dir
import matplotlib.pyplot as plt
import os
from ipydex import Container
# link to documentation with examples: https://ackrep-doc.readthedocs.io/en/latest/devdoc/contributing_data.html
def simulate():
"""
simulate the system model with scipy.integrate.solve_ivp
:return: result of solve_ivp, might contains input function
"""
model = system_model.Model()
rhs_xx_pp_symb = model.get_rhs_symbolic()
rhs = model.get_rhs_func()
# initial state values
xx0 = np.ones(model.sys_dim)
t_end = 10
tt = np.linspace(0, t_end, 1000)
simulation_data = solve_ivp(rhs, (0, t_end), xx0, t_eval=tt)
# using odeint for models with large state vectors
# res = odeint(rhs, y0=xx0, t=tt, tfirst=True)
# simulation_data = Container()
# simulation_data.y = res.transpose()
# simulation_data.t = tt
# postprocessing: calc output
ny = 3
C = model.get_parameter_value("C")
D21 = model.get_parameter_value("D21")
output = np.zeros((ny, len(tt)))
for i in range(len(tt)):
output[:,i] = np.matmul(C, simulation_data.y[:,i]) # + np.matmul(D21, w)
simulation_data.output = output
save_plot(simulation_data)
return simulation_data
def save_plot(simulation_data):
"""
plot your data and save the plot
access to data via: simulation_data.t array of time values
simulation_data.y array of data components
simulation_data.uu array of input values
:param simulation_data: simulation_data of system_model
:return: None
"""
for i in range(simulation_data.output.shape[0]):
plt.plot(simulation_data.t, simulation_data.output[i], label=f"$y_{i}$")
plt.legend()
plt.tight_layout()
save_plot_in_dir()
def evaluate_simulation(simulation_data):
"""
assert that the simulation results are as expected
:param simulation_data: simulation_data of system_model
:return:
"""
expected_final_state = np.array([ 3.55205152e+02, 6.57383047e+02, 4.20925811e+00, 1.89985874e+01,
1.64318608e+02, 5.02290372e+01, 4.74354444e+01, 2.11190544e+01,
4.25210348e+00, 5.50556387e-01, 1.78147296e+01, 5.69934393e-01,
1.82610159e+01, 2.94189544e+01, -5.55947506e-03, -1.26491106e-02,
-1.78885438e-03, -7.51318840e-01, 1.00000000e+00, 1.00000000e+00,
1.00000000e+00])
rc = ResultContainer(score=1.0)
simulated_final_state = simulation_data.y[:, -1]
rc.final_state_errors = [
simulated_final_state[i] - expected_final_state[i] for i in np.arange(0, len(simulated_final_state))
]
rc.success = np.allclose(expected_final_state, simulated_final_state, rtol=0, atol=1e-2)
return rc
system_model.py
# This file was autogenerated from the template: system_model.py.template (2022-10-10 15:53:27).
import sympy as sp
import numpy as np
import symbtools as st
import importlib
import sys, os
#from ipydex import IPS, activate_ips_on_exception
from ackrep_core.system_model_management import GenericModel, import_parameters
# Import parameter_file
params = import_parameters()
#link to documentation with examples: https://ackrep-doc.readthedocs.io/en/latest/devdoc/contributing_data.html
class Model(GenericModel):
def initialize(self):
"""
this function is called by the constructor of GenericModel
:return: None
"""
# Define number of inputs -- MODEL DEPENDENT
self.u_dim = 3
# Set "sys_dim" to constant value, if system dimension is constant
self.sys_dim = 21
# check existence of params file
self.has_params = True
self.params = params
# ----------- SET DEFAULT INPUT FUNCTION ---------- #
def uu_default_func(self):
"""
define input function
:return:(function with 2 args - t, xx_nv) default input function
"""
def uu_rhs(t, xx_nv):
"""
sequence of numerical input values
:param t:(scalar or vector) time
:param xx_nv:(vector or array of vectors) numeric state vector
:return:(list) numeric inputs
"""
u = np.zeros(self.u_dim)
return u
return uu_rhs
# ----------- SYMBOLIC RHS FUNCTION ---------- #
def get_rhs_symbolic(self):
"""
define symbolic rhs function
:return: matrix of symbolic rhs-functions
"""
if self.dxx_dt_symb is not None:
return self.dxx_dt_symb
x = self.xx_symb
A, B, B1, C1, C, D11, D12, D21 = self.pp_symb # parameters
w = np.zeros(21) # noise
u = self.uu_symb # inputs
# define symbolic rhs functions
self.dxx_dt_symb = np.matmul(A,x) + np.matmul(B1,w) + np.matmul(B,u)
return self.dxx_dt_symb
parameters.py
# This file was autogenerated from the template: parameters.py.template (2022-10-10 15:53:27).
import sys
import os
import numpy as np
import sympy as sp
import tabulate as tab
#link to documentation with examples: https://ackrep-doc.readthedocs.io/en/latest/devdoc/contributing_data.html
# set model name
model_name = 'Aero engine control'
# ---------- create symbolic parameters
A = sp.MatrixSymbol('A', 21, 21)
B = sp.MatrixSymbol('B', 21, 3)
B1 = sp.MatrixSymbol('B1', 21, 21)
C1 = sp.MatrixSymbol('C1', 21, 21)
C = sp.MatrixSymbol('C', 3, 21)
D11 = sp.MatrixSymbol('D11', 21, 21)
D12 = sp.MatrixSymbol('D12', 21, 3)
D21 = sp.MatrixSymbol('D21', 3, 21)
pp_symb = [A, B, B1, C1, C, D11, D12, D21]
# ---------- create auxiliary symbolic parameters
# set numerical values of auxiliary parameters
# trailing "_nv" stands for "numerical value"
A_nv = sp.Matrix(np.array([[-3.82987000e+00, -4.18250000e-02, -7.96501000e+01,
-4.49670000e+01, -1.01832000e+00, 6.17055000e+00,
1.04408000e+02, -1.17951000e+02, 0.00000000e+00,
-7.43723000e+01, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
-1.01907560e+03, 0.00000000e+00, -1.70430306e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[ 2.84779000e-01, -1.76641000e+00, -1.07161000e+01,
-3.41140000e+01, 1.50798000e+01, 4.89181000e+00,
-3.00478000e+01, 0.00000000e+00, 0.00000000e+00,
-1.07130000e+01, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
-3.49431681e+02, 0.00000000e+00, -6.07578801e+02,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[ 6.59365000e+00, 0.00000000e+00, -2.17139000e+02,
-6.88769000e+01, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
-2.17128000e+02, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[ 8.45688000e+00, -2.65927000e+00, 2.83779000e+02,
-1.70794000e+02, 1.33883000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
-2.85895000e+02, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, -9.74265998e+02,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[-1.12811000e+00, 9.58650000e+00, 4.23803000e+01,
2.91710000e+02, -1.03535000e+02, -7.75365000e+01,
6.52500000e-03, 0.00000000e+00, 0.00000000e+00,
4.24975000e+01, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
-9.19582438e+05, 0.00000000e+00, 3.15452731e+03,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[ 3.58720000e+00, -1.28714000e+00, -1.34730000e+02,
-8.79899000e+01, -1.31337000e+01, -7.78610000e+01,
-4.16000000e-04, 0.00000000e+00, 0.00000000e+00,
-1.34799000e+02, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
-5.87804962e+05, 0.00000000e+00, -6.90475431e+02,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[ 7.31568000e-01, -2.56991000e-01, 8.74435000e-01,
-1.45267000e+00, 4.63524000e+01, 6.36951000e-01,
-2.05057000e+02, 9.28794000e+01, 0.00000000e+00,
8.32994000e-01, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
-2.85023201e+03, 0.00000000e+00, -1.78091634e+01,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[-4.86111000e-01, 1.35324000e-01, 3.65233000e+00,
1.81204000e+00, 2.70741000e+00, -1.64865000e+01,
1.26638000e+02, -1.17343000e+02, -9.64975000e+02,
2.66293000e+00, 1.92584000e+00, 8.82010000e-01,
5.41057000e+01, 0.00000000e+00, 0.00000000e+00,
1.81727401e+03, 0.00000000e+00, 1.32627341e+01,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[-7.42910000e-02, 4.34200000e-03, -5.81330000e-02,
9.21880000e-02, 1.09342000e-01, -6.68402000e-01,
-7.89099000e-01, 6.20959000e+01, -4.27634000e+01,
9.50384000e-01, -1.98228000e+00, -9.07858000e-01,
-5.56913000e+01, 0.00000000e+00, 0.00000000e+00,
1.57675117e+02, 0.00000000e+00, 2.99359191e-01,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[ 2.46532000e+00, 0.00000000e+00, -8.11948000e+01,
2.48376000e+01, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
-8.11834000e+01, -5.39502000e+01, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[-1.64900000e-03, 2.77000000e-03, 6.21560000e-02,
1.02703000e-01, -1.36600000e-03, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
1.80932000e+02, 0.00000000e+00, -1.80870000e+02,
0.00000000e+00, 0.00000000e+00, -1.80874000e+02,
0.00000000e+00, 0.00000000e+00, 1.01054620e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[-5.70290000e-02, -1.09500000e-03, 2.49846000e+00,
-7.95096000e-01, -1.69790000e-02, 9.42710000e-02,
1.16501000e-01, -8.48330000e+00, 1.12490000e+01,
-3.82267000e+01, 8.37245000e+01, -5.92684000e+01,
-7.05086000e+01, 0.00000000e+00, 0.00000000e+00,
-2.92250586e+01, 0.00000000e+00, 1.23291198e-01,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[ 2.93666000e-01, -1.06475000e-01, -1.22085000e+01,
1.76340000e+00, -2.56286000e+00, 1.56863000e+01,
-3.74502000e-01, 1.72810000e+01, 3.61637000e+02,
-1.26925000e+01, 0.00000000e+00, 1.49226000e+02,
-1.25060000e+02, -1.84619000e+01, 2.41259000e+02,
-3.83248288e+03, -2.40228609e+05, -5.05716960e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[ 8.82409000e-01, -3.28029000e-01, -3.67457000e+01,
5.20733000e+00, -7.89251000e+00, 4.83109000e+01,
-8.81433000e-01, 5.31433000e+01, 3.55970000e+02,
-3.83769000e+01, 0.00000000e+00, -2.96542000e+02,
-5.32244000e+01, -9.96758000e+01, 1.02410000e+02,
-1.06338701e+04, -1.02239177e+05, -1.55376538e+01,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[-4.03510000e-02, 1.43600000e-03, 1.51987000e+00,
-4.45349000e-01, 3.62800000e-02, -2.25446000e-01,
3.41000000e-03, -2.49067000e-01, -2.79699000e+00,
-2.25117000e+01, 4.94303000e+01, 2.49260000e-01,
-4.62104000e+01, 4.05853000e-01, -3.77489000e+02,
4.96789868e+01, 0.00000000e+00, 1.24280658e-01,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
-6.25000000e+01, 0.00000000e+00, 0.00000000e+00,
-7.90569415e-01, 0.00000000e+00, 0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, -3.12500000e+01, 0.00000000e+00,
0.00000000e+00, -5.59016994e-02, 0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, -3.12500000e+01,
0.00000000e+00, 0.00000000e+00, -2.34787138e+01],
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]))
B_nv = sp.Matrix(np.array([[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[-5.64170787, 1.09833622, -3.31362175],
[ 8.73726666, 45.7947614 , -1.50021632],
[13.34840012, 4.26136756, -7.16353678]]))
B1_nv = sp.Matrix(np.array([[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[-5.64170787, 1.09833622, -3.31362175],
[ 8.73726666, 45.7947614 , -1.50021632],
[13.34840012, 4.26136756, -7.16353678]]))
C1_nv = sp.Matrix(np.array([[1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
1., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 1., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 1., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 1., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 1.]]))
C_nv = sp.Matrix(np.array([[ 1.02702703e-05, -3.08108108e-05, 2.29416216e-02,
-1.03135135e-03, 5.91459459e-03, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
2.28329730e-02, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, -1.06364315e-02,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[-1.77777778e-03, 0.00000000e+00, 6.04444444e-02,
-1.86666667e-02, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
4.66000000e-01, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[ 0.00000000e+00, 3.59590909e-03, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]))
D11_nv = sp.Matrix(np.array([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.]]))
D12_nv = sp.Matrix(np.array([[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]]))
D21_nv = sp.Matrix(np.array([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.]]))
# ---------- create symbolic parameter functions
# parameter values can be constant/fixed values OR set in relation to other parameters (for example: a = 2*b)
# list of symbolic parameter functions
# tailing "_sf" stands for "symbolic parameter function"
pp_sf = [A_nv, B_nv, B1_nv, C1_nv, C_nv, D11_nv, D12_nv, D21_nv]
# ---------- list for substitution
# -- entries are tuples like: (independent symbolic parameter, numerical value)
pp_subs_list = []
# OPTONAL: Dictionary which defines how certain variables shall be written
# in the table - key: Symbolic Variable, Value: LaTeX Representation/Code
# useful for example for complex variables: {Z: r"\underline{Z}"}
latex_names = {}
# ---------- Define LaTeX table
# Define table header
# DON'T CHANGE FOLLOWING ENTRIES: "Symbol", "Value"
tabular_header = ["Symbol", "Value"]
# Define column text alignments
col_alignment = ["center", "left"]
# Define Entries of all columns before the Symbol-Column
# --- Entries need to be latex code
col_1 = []
# contains all lists of the columns before the "Symbol" Column
# --- Empty list, if there are no columns before the "Symbol" Column
start_columns_list = []
# Define Entries of the columns after the Value-Column
# --- Entries need to be latex code
col_4 = []
# contains all lists of columns after the FIX ENTRIES
# --- Empty list, if there are no columns after the "Value" column
end_columns_list = []