Automatic Control Knowledge Repository

You currently have javascript disabled. Some features will be unavailable. Please consider enabling javascript.

Details for: "Chemical reactor model by"

Name: Chemical reactor model by (Key: COM32)
Path: ackrep_data/system_models/compleib_models/REA4 View on GitHub
Type: system_model
Short Description: REA4 Chemical reactor model by P. M. Maekilae, "Parametric LQ Control", IJOC, Vol. 41, Nr. 6, pp. 1413-1428, 1985 discrete modell
Created: 2022-10-10 15:53:28
Compatible Environment: default_conda_environment (Key: CDAMA)
Source Code [ / ] simulation.py
# This file was autogenerated from the template: simulation.py.template (2022-10-10 15:53:28).

import numpy as np
import system_model
from scipy.integrate import solve_ivp, odeint

from ackrep_core import ResultContainer
from ackrep_core.system_model_management import save_plot_in_dir
import matplotlib.pyplot as plt
import os
from ipydex import Container

# link to documentation with examples: https://ackrep-doc.readthedocs.io/en/latest/devdoc/contributing_data.html


def simulate():
    """
    simulate the system model with scipy.integrate.solve_ivp

    :return: result of solve_ivp, might contains input function
    """

    model = system_model.Model()

    rhs_xx_pp_symb = model.get_rhs_symbolic()
    rhs = model.get_rhs_func()

    # initial state values
    xx0 = np.ones(model.sys_dim)

    t_end = 10
    tt = np.linspace(0, t_end, 1000)

    simulation_data = solve_ivp(rhs, (0, t_end), xx0, t_eval=tt)

    # using odeint for models with large state vectors
    # res = odeint(rhs, y0=xx0, t=tt, tfirst=True)
    # simulation_data = Container()
    # simulation_data.y = res.transpose()
    # simulation_data.t = tt

    # postprocessing: calc output
    ny = 1
    C = model.get_parameter_value("C")
    D21 = model.get_parameter_value("D21")
    output = np.zeros((ny, len(tt)))
    for i in range(len(tt)):
        output[:,i] = np.matmul(C, simulation_data.y[:,i]) # + np.matmul(D21, w)
    simulation_data.output = output

    save_plot(simulation_data)

    return simulation_data


def save_plot(simulation_data):
    """
    plot your data and save the plot
    access to data via: simulation_data.t   array of time values
                        simulation_data.y   array of data components
                        simulation_data.uu  array of input values

    :param simulation_data: simulation_data of system_model
    :return: None
    """

    for i in range(simulation_data.output.shape[0]):
        plt.plot(simulation_data.t, simulation_data.output[i], label=f"$y_{i}$")

    plt.legend()
    plt.tight_layout()

    save_plot_in_dir()


def evaluate_simulation(simulation_data):
    """
    assert that the simulation results are as expected

    :param simulation_data: simulation_data of system_model
    :return:
    """
    expected_final_state = np.array([  297.26715728,   797.98971349,  3026.23483739,  9344.35596204,
       18847.328386  , 24435.59386421, 25426.60323261,   430.56472824])

    rc = ResultContainer(score=1.0)
    simulated_final_state = simulation_data.y[:, -1]
    rc.final_state_errors = [
        simulated_final_state[i] - expected_final_state[i] for i in np.arange(0, len(simulated_final_state))
    ]
    rc.success = np.allclose(expected_final_state, simulated_final_state, rtol=0, atol=1e-2)

    return rc
system_model.py
# This file was autogenerated from the template: system_model.py.template (2022-10-10 15:53:28).

import sympy as sp
import numpy as np
import symbtools as st
import importlib
import sys, os
#from ipydex import IPS, activate_ips_on_exception  

from ackrep_core.system_model_management import GenericModel, import_parameters

# Import parameter_file
params = import_parameters()


#link to documentation with examples: https://ackrep-doc.readthedocs.io/en/latest/devdoc/contributing_data.html


class Model(GenericModel): 

    def initialize(self):
        """
        this function is called by the constructor of GenericModel

        :return: None
        """

        # Define number of inputs -- MODEL DEPENDENT
        self.u_dim = 1

        # Set "sys_dim" to constant value, if system dimension is constant 
        self.sys_dim = 8

        # check existence of params file
        self.has_params = True
        self.params = params
        

    # ----------- SET DEFAULT INPUT FUNCTION ---------- # 
    def uu_default_func(self):
        """
        define input function
    
        :return:(function with 2 args - t, xx_nv) default input function 
        """ 
        
        def uu_rhs(t, xx_nv):
            """
            sequence of numerical input values

            :param t:(scalar or vector) time
            :param xx_nv:(vector or array of vectors) numeric state vector
            :return:(list) numeric inputs 
            """ 
            u = np.zeros(self.u_dim)
            return u

        return uu_rhs


    # ----------- SYMBOLIC RHS FUNCTION ---------- # 

    def get_rhs_symbolic(self):
        """
        define symbolic rhs function

        :return: matrix of symbolic rhs-functions
        """
        if self.dxx_dt_symb is not None:
            return self.dxx_dt_symb

        x = self.xx_symb  
        A, B, B1, C1, C, D11, D12, D21 = self.pp_symb   # parameters
        w = np.zeros(1) # noise
        u = self.uu_symb   # inputs

        # define symbolic rhs functions
        self.dxx_dt_symb = np.matmul(A,x) + np.matmul(B1,w) + np.matmul(B,u)
        



        return self.dxx_dt_symb
    
parameters.py
# This file was autogenerated from the template: parameters.py.template (2022-10-10 15:53:28).

import sys
import os
import numpy as np
import sympy as sp

import tabulate as tab


#link to documentation with examples: https://ackrep-doc.readthedocs.io/en/latest/devdoc/contributing_data.html


# set model name
model_name = 'Chemical reactor model by'


# ---------- create symbolic parameters
A = sp.MatrixSymbol('A', 8, 8)
B = sp.MatrixSymbol('B', 8, 1)
B1 = sp.MatrixSymbol('B1', 8, 1)
C1 = sp.MatrixSymbol('C1', 1, 8)
C = sp.MatrixSymbol('C', 1, 8)
D11 = sp.MatrixSymbol('D11', 1, 1)
D12 = sp.MatrixSymbol('D12', 1, 1)
D21 = sp.MatrixSymbol('D21', 1, 1)

pp_symb = [A, B, B1, C1, C, D11, D12, D21]


# ---------- create auxiliary symbolic parameters 

# set numerical values of auxiliary parameters
# trailing "_nv" stands for "numerical value"
A_nv = sp.Matrix(np.array([[ 0.5623  , -0.01642 ,  0.01287 , -0.0161  ,  0.02094 , -0.02988 ,
         0.0183  ,  0.008743],
       [ 0.102   ,  0.6114  , -0.02468 ,  0.02468 , -0.03005 ,  0.04195 ,
        -0.02559 ,  0.03889 ],
       [ 0.1361  ,  0.2523  ,  0.641   , -0.03404 ,  0.03292 , -0.04296 ,
         0.02588 ,  0.08467 ],
       [ 0.09951 ,  0.2859  ,  0.3476  ,  0.6457  , -0.03249 ,  0.03316 ,
        -0.01913 ,  0.1103  ],
       [-0.04794 ,  0.08708 ,  0.3297  ,  0.3102  ,  0.6201  , -0.03015 ,
         0.01547 ,  0.08457 ],
       [-0.1373  , -0.1224  ,  0.1705  ,  0.3106  ,  0.191   ,  0.5815  ,
        -0.01274 ,  0.05394 ],
       [-0.1497  , -0.1692  ,  0.1165  ,  0.2962  ,  0.1979  ,  0.07631 ,
         0.5242  ,  0.04702 ],
       [ 0.      ,  0.      ,  0.      ,  0.      ,  0.      ,  0.      ,
         0.      ,  0.6065  ]]))
B_nv = sp.Matrix(np.array([[-0.1774 ],
       [-0.2156 ],
       [-0.2194 ],
       [-0.09543],
       [ 0.0579 ],
       [ 0.09303],
       [ 0.08962],
       [ 0.     ]]))
B1_nv = sp.Matrix(np.array([[-0.1774 ],
       [-0.2156 ],
       [-0.2194 ],
       [-0.09543],
       [ 0.0579 ],
       [ 0.09303],
       [ 0.08962],
       [ 0.     ]]))
C1_nv = sp.Matrix(np.array([[-4.650e-02, -1.135e-01, -1.909e-01, -2.619e-01, -2.634e-01,
        -1.422e-01, -2.000e-04,  1.856e-01]]))
C_nv = sp.Matrix(np.array([[-0.0049,  0.0049, -0.006 ,  0.01  ,  0.0263,  0.3416,  0.6759,
         0.    ]]))
D11_nv = sp.Matrix(np.array([0.]))
D12_nv = sp.Matrix(np.array([0.1001]))
D21_nv = sp.Matrix(np.array([1.]))


# ---------- create symbolic parameter functions
# parameter values can be constant/fixed values OR set in relation to other parameters (for example: a = 2*b)  


# list of symbolic parameter functions
# tailing "_sf" stands for "symbolic parameter function"
pp_sf = [A_nv, B_nv, B1_nv, C1_nv, C_nv, D11_nv, D12_nv, D21_nv]


#  ---------- list for substitution
# -- entries are tuples like: (independent symbolic parameter, numerical value)
pp_subs_list = []


# OPTONAL: Dictionary which defines how certain variables shall be written
# in the table - key: Symbolic Variable, Value: LaTeX Representation/Code
# useful for example for complex variables: {Z: r"\underline{Z}"}
latex_names = {}


# ---------- Define LaTeX table

# Define table header 
# DON'T CHANGE FOLLOWING ENTRIES: "Symbol", "Value"
tabular_header = ["Symbol", "Value"]

# Define column text alignments
col_alignment = ["center", "left"]


# Define Entries of all columns before the Symbol-Column
# --- Entries need to be latex code
col_1 = [] 

# contains all lists of the columns before the "Symbol" Column
# --- Empty list, if there are no columns before the "Symbol" Column
start_columns_list = []


# Define Entries of the columns after the Value-Column
# --- Entries need to be latex code
col_4 = []

# contains all lists of columns after the FIX ENTRIES
# --- Empty list, if there are no columns after the "Value" column
end_columns_list = []

Related Problems:
Extensive Material:
Download pdf
Result: Success.
Last Build: Checkout CI Build
Runtime: 3.4 (estimated: 10s)