Automatic Control Knowledge Repository

You currently have javascript disabled. Some features will be unavailable. Please consider enabling javascript.

Details for: "roessler attractor"

Name: roessler attractor (Key: FD5RW)
Path: ackrep_data/system_models/roessler_attractor_system View on GitHub
Type: system_model
Short Description: continuous-time dynamical system with chaotic dynamics
Created: 2022-04-26
Compatible Environment: default_conda_environment (Key: CDAMA)
Source Code [ / ] simulation.py
# -*- coding: utf-8 -*-
"""
Created on Mon Jun  7 19:06:37 2021

@author: Rocky
"""

import numpy as np
import system_model
from scipy.integrate import solve_ivp

from ackrep_core import ResultContainer
from ackrep_core.system_model_management import save_plot_in_dir
import matplotlib.pyplot as plt
import os


def simulate():
    model = system_model.Model()

    rhs_xx_pp_symb = model.get_rhs_symbolic()
    print("Computational Equations:\n")
    for i, eq in enumerate(rhs_xx_pp_symb):
        print(f"dot_x{i+1} =", eq)

    rhs = model.get_rhs_func()

    # Initial State values
    xx0 = [2, 3, 4]
    t_end = 300
    # Note: The system is simulated for 300s to generate a nice plot, but due to numerical differences
    # on different hardware, the evaluation is performed at half that time.
    tt = np.linspace(0, t_end, 12000 - 1)
    sim = solve_ivp(rhs, (0, t_end), xx0, t_eval=tt)

    save_plot(sim)

    return sim


def save_plot(simulation_data):

    y = simulation_data.y.tolist()

    fig = plt.figure()
    ax = fig.add_subplot(111, projection="3d")
    ax.plot(y[0], y[1], y[2], label="Phase portrait", lw=1, c="k")
    ax.set_xlabel("x", fontsize=15)
    ax.set_ylabel("y", fontsize=15)
    ax.set_zlabel("z", fontsize=15)
    ax.legend()
    ax.grid()

    plt.tight_layout()

    save_plot_in_dir()


def evaluate_simulation(simulation_data):
    """

    :param simulation_data: simulation_data of system_model
    :return:
    """

    expected_final_state = [4.486449710392184, 0.9668556795992576, 2.2126416283661734]

    rc = ResultContainer(score=1.0)
    # Note: The system is simulated for 300s to generate a nice plot, but due to numerical differences
    # on different hardware, the evaluation is performed at half that time.
    simulated_final_state = simulation_data.y[:, 5999]
    rc.final_state_errors = [
        simulated_final_state[i] - expected_final_state[i] for i in np.arange(0, len(simulated_final_state))
    ]
    rc.success = np.allclose(expected_final_state, simulated_final_state, rtol=0, atol=1e-2)

    return rc
system_model.py
# -*- coding: utf-8 -*-
"""
Created on Wed Jun  9 13:33:34 2021

@author: Jonathan Rockstroh
"""

import sympy as sp
import symbtools as st
import importlib
import sys, os
from ipydex import IPS, activate_ips_on_exception  # for debugging only

from ackrep_core.system_model_management import GenericModel, import_parameters

# Import parameter_file
params = import_parameters()


class Model(GenericModel):
    def initialize(self):
        """
        this function is called by the constructor of GenericModel

        :return: None
        """

        # Define number of inputs -- MODEL DEPENDENT
        self.u_dim = 0
        # Set "sys_dim" to constant value, if system dimension is constant
        # else set "sys_dim" to x_dim -- MODEL DEPENDENT
        self.sys_dim = 3

        # check existance of params file -> if not: System is defined to hasn't
        # parameters
        self.has_params = True
        self.params = params

    # ----------- SYMBOLIC RHS FUNCTION ---------- #
    # --------------- MODEL DEPENDENT

    def get_rhs_symbolic(self):
        """
        :return:(matrix) symbolic rhs-functions
        """
        if self.dxx_dt_symb is not None:
            return self.dxx_dt_symb
        x, y, z = self.xx_symb
        a, b, c = self.pp_symb

        # create symbolic rhs functions
        dx_dt = -y - z
        dy_dt = x + a * y
        dz_dt = b * x - c * z + x * z

        # put rhs functions into a vector
        self.dxx_dt_symb = sp.Matrix([dx_dt, dy_dt, dz_dt])

        return self.dxx_dt_symb
parameters.py
# -*- coding: utf-8 -*-
"""
Created on Fri Jun 11 13:51:06 2021

@author: Jonathan Rockstroh
"""
import sys
import os
import numpy as np
import sympy as sp

import tabulate as tab


model_name = "Roessler_Atractor_1979_1"

# CREATE SYMBOLIC PARAMETERS
pp_symb = [a, b, c] = sp.symbols("a, b, c", real=True)


# SYMBOLIC PARAMETER FUNCTIONS
# spiral-type chaos
# a_sf = 0.32
# b_sf = 0.3
# c_sf = 4.5
# screw-type chaos
a_sf = 0.38
b_sf = 0.3
c_sf = 4.84

# List of symbolic parameter functions
pp_sf = [a_sf, b_sf, c_sf]


# List for Substitution
pp_subs_list = []


# OPTONAL: Dictionary which defines how certain variables shall be written
# in the tabular - key: Symbolic Variable, Value: LaTeX Representation/Code
# useful for example for complex variables: {Z: r"\underline{Z}"}
latex_names = {}

# ---------- CREATE BEGIN OF LATEX TABULAR

# Define tabular Header
tabular_header = ["Symbol", "Value"]

# Define column text alignments
col_alignment = ["center", "left"]

col_1 = []

# contains all lists of the columns before the "Symbol" Column
start_columns_list = []

# contains all lists of columns after the FIX ENTRIES
end_columns_list = []

Related Problems:
Extensive Material:
Download pdf
Result: Success.
Last Build: Checkout CI Build
Runtime: 3.3 (estimated: 10s)
Plot:

The image of the latest CI job is not available. This is a fallback image.