Automatic Control Knowledge Repository

You currently have javascript disabled. Some features will be unavailable. Please consider enabling javascript.

Details for: "Aero engine control"

Name: Aero engine control (Key: COM28)
Path: ackrep_data/system_models/compleib_models/JE3 View on GitHub
Type: system_model
Short Description: JE3 Aero engine control "Multivariable feedback control Analysis and design" S. Skogestad and I. Postlethwaite John Wiley and Sons, 1996, Section 12.3.3 Note Matlab files http//www.nt.ntnu.no/users/skoge/book/matlab.html stored in /export/home/leibfr/Lipinski/matlab/.. ..Examples_Multi_Feedback_Control/matlab_m/ F. Leibfritz, 16.09.2003 Data matrices generated by Sec12_33.m in directory above on Laptop save Aero_Engine a b c d A_Hinf B1 B2 C1 C2 D11 D12 D21 D22 A_Hinf B1 B2 C1 C2 D11 D12 D21 D22 -- data set G5 for H_inf design ==> A_Hinf = A in Sec12_33.m
Created: 2022-10-10 15:53:27
Compatible Environment: default_conda_environment (Key: CDAMA)
Source Code [ / ] simulation.py
# This file was autogenerated from the template: simulation.py.template (2022-10-10 15:53:27).

import numpy as np
import system_model
from scipy.integrate import solve_ivp, odeint

from ackrep_core import ResultContainer
from ackrep_core.system_model_management import save_plot_in_dir
import matplotlib.pyplot as plt
import os
from ipydex import Container

# link to documentation with examples: https://ackrep-doc.readthedocs.io/en/latest/devdoc/contributing_data.html


def simulate():
    """
    simulate the system model with scipy.integrate.solve_ivp

    :return: result of solve_ivp, might contains input function
    """

    model = system_model.Model()

    rhs_xx_pp_symb = model.get_rhs_symbolic()
    rhs = model.get_rhs_func()

    # initial state values
    xx0 = np.ones(model.sys_dim)

    t_end = 10
    tt = np.linspace(0, t_end, 1000)

    simulation_data = solve_ivp(rhs, (0, t_end), xx0, t_eval=tt)

    # using odeint for models with large state vectors
    # res = odeint(rhs, y0=xx0, t=tt, tfirst=True)
    # simulation_data = Container()
    # simulation_data.y = res.transpose()
    # simulation_data.t = tt

    # postprocessing: calc output
    ny = 6
    C = model.get_parameter_value("C")
    D21 = model.get_parameter_value("D21")
    output = np.zeros((ny, len(tt)))
    for i in range(len(tt)):
        output[:,i] = np.matmul(C, simulation_data.y[:,i]) # + np.matmul(D21, w)
    simulation_data.output = output

    save_plot(simulation_data)

    return simulation_data


def save_plot(simulation_data):
    """
    plot your data and save the plot
    access to data via: simulation_data.t   array of time values
                        simulation_data.y   array of data components
                        simulation_data.uu  array of input values

    :param simulation_data: simulation_data of system_model
    :return: None
    """

    for i in range(simulation_data.output.shape[0]):
        plt.plot(simulation_data.t, simulation_data.output[i], label=f"$y_{i}$")

    plt.legend()
    plt.tight_layout()

    save_plot_in_dir()


def evaluate_simulation(simulation_data):
    """
    assert that the simulation results are as expected

    :param simulation_data: simulation_data of system_model
    :return:
    """
    expected_final_state = np.array([ 3.55205153e+002,  6.57383046e+002,  4.20925417e+000,
        1.89985897e+001,  1.64318605e+002,  5.02290343e+001,
        4.74354414e+001,  2.11190598e+001,  4.25210506e+000,
        5.50553731e-001,  1.78147245e+001,  5.69939467e-001,
        1.82610300e+001,  2.94189676e+001, -5.57639379e-003,
       -1.26491106e-002, -1.78885438e-003, -7.51318840e-001,
        1.00000000e+000,  1.00000000e+000,  1.00000000e+000,
        5.45407801e-242,  0.00000000e+000,  1.92874986e-022])

    rc = ResultContainer(score=1.0)
    simulated_final_state = simulation_data.y[:, -1]
    rc.final_state_errors = [
        simulated_final_state[i] - expected_final_state[i] for i in np.arange(0, len(simulated_final_state))
    ]
    rc.success = np.allclose(expected_final_state, simulated_final_state, rtol=0, atol=1e-2)

    return rc
system_model.py
# This file was autogenerated from the template: system_model.py.template (2022-10-10 15:53:27).

import sympy as sp
import numpy as np
import symbtools as st
import importlib
import sys, os
#from ipydex import IPS, activate_ips_on_exception  

from ackrep_core.system_model_management import GenericModel, import_parameters

# Import parameter_file
params = import_parameters()


#link to documentation with examples: https://ackrep-doc.readthedocs.io/en/latest/devdoc/contributing_data.html


class Model(GenericModel): 

    def initialize(self):
        """
        this function is called by the constructor of GenericModel

        :return: None
        """

        # Define number of inputs -- MODEL DEPENDENT
        self.u_dim = 3

        # Set "sys_dim" to constant value, if system dimension is constant 
        self.sys_dim = 24

        # check existence of params file
        self.has_params = True
        self.params = params
        

    # ----------- SET DEFAULT INPUT FUNCTION ---------- # 
    def uu_default_func(self):
        """
        define input function
    
        :return:(function with 2 args - t, xx_nv) default input function 
        """ 
        
        def uu_rhs(t, xx_nv):
            """
            sequence of numerical input values

            :param t:(scalar or vector) time
            :param xx_nv:(vector or array of vectors) numeric state vector
            :return:(list) numeric inputs 
            """ 
            u = np.zeros(self.u_dim)
            return u

        return uu_rhs


    # ----------- SYMBOLIC RHS FUNCTION ---------- # 

    def get_rhs_symbolic(self):
        """
        define symbolic rhs function

        :return: matrix of symbolic rhs-functions
        """
        if self.dxx_dt_symb is not None:
            return self.dxx_dt_symb

        x = self.xx_symb  
        A, B, B1, C1, C, D11, D12, D21 = self.pp_symb   # parameters
        w = np.zeros(6) # noise
        u = self.uu_symb   # inputs

        # define symbolic rhs functions
        self.dxx_dt_symb = np.matmul(A,x) + np.matmul(B1,w) + np.matmul(B,u)
        



        return self.dxx_dt_symb
    
parameters.py
# This file was autogenerated from the template: parameters.py.template (2022-10-10 15:53:27).

import sys
import os
import numpy as np
import sympy as sp

import tabulate as tab


#link to documentation with examples: https://ackrep-doc.readthedocs.io/en/latest/devdoc/contributing_data.html


# set model name
model_name = 'Aero engine control'


# ---------- create symbolic parameters
A = sp.MatrixSymbol('A', 24, 24)
B = sp.MatrixSymbol('B', 24, 3)
B1 = sp.MatrixSymbol('B1', 24, 6)
C1 = sp.MatrixSymbol('C1', 9, 24)
C = sp.MatrixSymbol('C', 6, 24)
D11 = sp.MatrixSymbol('D11', 9, 6)
D12 = sp.MatrixSymbol('D12', 9, 3)
D21 = sp.MatrixSymbol('D21', 6, 6)

pp_symb = [A, B, B1, C1, C, D11, D12, D21]


# ---------- create auxiliary symbolic parameters 

# set numerical values of auxiliary parameters
# trailing "_nv" stands for "numerical value"
A_nv = sp.Matrix(np.array([[-3.82987000e+00, -4.18250000e-02, -7.96501000e+01,
        -4.49670000e+01, -1.01832000e+00,  6.17055000e+00,
         1.04408000e+02, -1.17951000e+02,  0.00000000e+00,
        -7.43723000e+01,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
        -1.01907560e+03,  0.00000000e+00, -1.70430306e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00],
       [ 2.84779000e-01, -1.76641000e+00, -1.07161000e+01,
        -3.41140000e+01,  1.50798000e+01,  4.89181000e+00,
        -3.00478000e+01,  0.00000000e+00,  0.00000000e+00,
        -1.07130000e+01,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
        -3.49431681e+02,  0.00000000e+00, -6.07578801e+02,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00],
       [ 6.59365000e+00,  0.00000000e+00, -2.17139000e+02,
        -6.88769000e+01,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
        -2.17128000e+02,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00],
       [ 8.45688000e+00, -2.65927000e+00,  2.83779000e+02,
        -1.70794000e+02,  1.33883000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
        -2.85895000e+02,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00, -9.74265998e+02,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00],
       [-1.12811000e+00,  9.58650000e+00,  4.23803000e+01,
         2.91710000e+02, -1.03535000e+02, -7.75365000e+01,
         6.52500000e-03,  0.00000000e+00,  0.00000000e+00,
         4.24975000e+01,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
        -9.19582438e+05,  0.00000000e+00,  3.15452731e+03,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00],
       [ 3.58720000e+00, -1.28714000e+00, -1.34730000e+02,
        -8.79899000e+01, -1.31337000e+01, -7.78610000e+01,
        -4.16000000e-04,  0.00000000e+00,  0.00000000e+00,
        -1.34799000e+02,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
        -5.87804962e+05,  0.00000000e+00, -6.90475431e+02,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00],
       [ 7.31568000e-01, -2.56991000e-01,  8.74435000e-01,
        -1.45267000e+00,  4.63524000e+01,  6.36951000e-01,
        -2.05057000e+02,  9.28794000e+01,  0.00000000e+00,
         8.32994000e-01,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
        -2.85023201e+03,  0.00000000e+00, -1.78091634e+01,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00],
       [-4.86111000e-01,  1.35324000e-01,  3.65233000e+00,
         1.81204000e+00,  2.70741000e+00, -1.64865000e+01,
         1.26638000e+02, -1.17343000e+02, -9.64975000e+02,
         2.66293000e+00,  1.92584000e+00,  8.82010000e-01,
         5.41057000e+01,  0.00000000e+00,  0.00000000e+00,
         1.81727401e+03,  0.00000000e+00,  1.32627341e+01,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00],
       [-7.42910000e-02,  4.34200000e-03, -5.81330000e-02,
         9.21880000e-02,  1.09342000e-01, -6.68402000e-01,
        -7.89099000e-01,  6.20959000e+01, -4.27634000e+01,
         9.50384000e-01, -1.98228000e+00, -9.07858000e-01,
        -5.56913000e+01,  0.00000000e+00,  0.00000000e+00,
         1.57675117e+02,  0.00000000e+00,  2.99359191e-01,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00],
       [ 2.46532000e+00,  0.00000000e+00, -8.11948000e+01,
         2.48376000e+01,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
        -8.11834000e+01, -5.39502000e+01,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00],
       [-1.64900000e-03,  2.77000000e-03,  6.21560000e-02,
         1.02703000e-01, -1.36600000e-03,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         1.80932000e+02,  0.00000000e+00, -1.80870000e+02,
         0.00000000e+00,  0.00000000e+00, -1.80874000e+02,
         0.00000000e+00,  0.00000000e+00,  1.01054620e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00],
       [-5.70290000e-02, -1.09500000e-03,  2.49846000e+00,
        -7.95096000e-01, -1.69790000e-02,  9.42710000e-02,
         1.16501000e-01, -8.48330000e+00,  1.12490000e+01,
        -3.82267000e+01,  8.37245000e+01, -5.92684000e+01,
        -7.05086000e+01,  0.00000000e+00,  0.00000000e+00,
        -2.92250586e+01,  0.00000000e+00,  1.23291198e-01,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00],
       [ 2.93666000e-01, -1.06475000e-01, -1.22085000e+01,
         1.76340000e+00, -2.56286000e+00,  1.56863000e+01,
        -3.74502000e-01,  1.72810000e+01,  3.61637000e+02,
        -1.26925000e+01,  0.00000000e+00,  1.49226000e+02,
        -1.25060000e+02, -1.84619000e+01,  2.41259000e+02,
        -3.83248288e+03, -2.40228609e+05, -5.05716960e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00],
       [ 8.82409000e-01, -3.28029000e-01, -3.67457000e+01,
         5.20733000e+00, -7.89251000e+00,  4.83109000e+01,
        -8.81433000e-01,  5.31433000e+01,  3.55970000e+02,
        -3.83769000e+01,  0.00000000e+00, -2.96542000e+02,
        -5.32244000e+01, -9.96758000e+01,  1.02410000e+02,
        -1.06338701e+04, -1.02239177e+05, -1.55376538e+01,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00],
       [-4.03510000e-02,  1.43600000e-03,  1.51987000e+00,
        -4.45349000e-01,  3.62800000e-02, -2.25446000e-01,
         3.41000000e-03, -2.49067000e-01, -2.79699000e+00,
        -2.25117000e+01,  4.94303000e+01,  2.49260000e-01,
        -4.62104000e+01,  4.05853000e-01, -3.77489000e+02,
         4.96789868e+01,  0.00000000e+00,  1.24280658e-01,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00],
       [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
        -6.25000000e+01,  0.00000000e+00,  0.00000000e+00,
        -7.90569415e-01,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00],
       [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00, -3.12500000e+01,  0.00000000e+00,
         0.00000000e+00, -5.59016994e-02,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00],
       [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00, -3.12500000e+01,
         0.00000000e+00,  0.00000000e+00, -2.34787138e+01,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00],
       [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00],
       [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00],
       [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00],
       [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
        -5.55555556e+01,  0.00000000e+00,  0.00000000e+00],
       [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00, -1.25000000e+02,  0.00000000e+00],
       [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00, -5.00000000e+00]]))
B_nv = sp.Matrix(np.array([[ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ],
       [-5.64170787,  1.09833622, -3.31362175],
       [ 8.73726666, 45.7947614 , -1.50021632],
       [13.34840012,  4.26136756, -7.16353678],
       [ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ]]))
B1_nv = sp.Matrix(np.array([[ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ],
       [-5.64170787,  1.09833622, -3.31362175],
       [ 8.73726666, 45.7947614 , -1.50021632],
       [13.34840012,  4.26136756, -7.16353678],
       [ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ]]))
C1_nv = sp.Matrix(np.array([[ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00],
       [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00],
       [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00],
       [ 1.02702703e-05, -3.08108108e-05,  2.29416216e-02,
        -1.03135135e-03,  5.91459459e-03,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         2.28329730e-02,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00, -1.06364315e-02,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00],
       [-1.77777778e-03,  0.00000000e+00,  6.04444444e-02,
        -1.86666667e-02,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         4.66000000e-01,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00],
       [ 0.00000000e+00,  3.59590909e-03,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00],
       [ 1.02702703e-05, -3.08108108e-05,  2.29416216e-02,
        -1.03135135e-03,  5.91459459e-03,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         2.28329730e-02,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00, -1.06364315e-02,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
        -7.45355992e+00,  0.00000000e+00,  0.00000000e+00],
       [-1.77777778e-03,  0.00000000e+00,  6.04444444e-02,
        -1.86666667e-02,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         4.66000000e-01,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00, -1.11803399e+01,  0.00000000e+00],
       [ 0.00000000e+00,  3.59590909e-03,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00, -2.23606798e+00]]))
C_nv = sp.Matrix(np.array([[ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00],
       [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00],
       [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00],
       [ 1.02702703e-05, -3.08108108e-05,  2.29416216e-02,
        -1.03135135e-03,  5.91459459e-03,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         2.28329730e-02,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00, -1.06364315e-02,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00],
       [-1.77777778e-03,  0.00000000e+00,  6.04444444e-02,
        -1.86666667e-02,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         4.66000000e-01,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00],
       [ 0.00000000e+00,  3.59590909e-03,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
         0.00000000e+00,  0.00000000e+00,  0.00000000e+00]]))
D11_nv = sp.Matrix(np.array([[0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 1., 0., 0.],
       [0., 0., 0., 0., 1., 0.],
       [0., 0., 0., 0., 0., 1.],
       [0., 0., 0., 1., 0., 0.],
       [0., 0., 0., 0., 1., 0.],
       [0., 0., 0., 0., 0., 1.]]))
D12_nv = sp.Matrix(np.array([[1., 0., 0.],
       [0., 1., 0.],
       [0., 0., 1.],
       [0., 0., 0.],
       [0., 0., 0.],
       [0., 0., 0.],
       [0., 0., 0.],
       [0., 0., 0.],
       [0., 0., 0.]]))
D21_nv = sp.Matrix(np.array([[1., 0., 0., 0., 0., 0.],
       [0., 1., 0., 0., 0., 0.],
       [0., 0., 1., 0., 0., 0.],
       [0., 0., 0., 1., 0., 0.],
       [0., 0., 0., 0., 1., 0.],
       [0., 0., 0., 0., 0., 1.]]))


# ---------- create symbolic parameter functions
# parameter values can be constant/fixed values OR set in relation to other parameters (for example: a = 2*b)  


# list of symbolic parameter functions
# tailing "_sf" stands for "symbolic parameter function"
pp_sf = [A_nv, B_nv, B1_nv, C1_nv, C_nv, D11_nv, D12_nv, D21_nv]


#  ---------- list for substitution
# -- entries are tuples like: (independent symbolic parameter, numerical value)
pp_subs_list = []


# OPTONAL: Dictionary which defines how certain variables shall be written
# in the table - key: Symbolic Variable, Value: LaTeX Representation/Code
# useful for example for complex variables: {Z: r"\underline{Z}"}
latex_names = {}


# ---------- Define LaTeX table

# Define table header 
# DON'T CHANGE FOLLOWING ENTRIES: "Symbol", "Value"
tabular_header = ["Symbol", "Value"]

# Define column text alignments
col_alignment = ["center", "left"]


# Define Entries of all columns before the Symbol-Column
# --- Entries need to be latex code
col_1 = [] 

# contains all lists of the columns before the "Symbol" Column
# --- Empty list, if there are no columns before the "Symbol" Column
start_columns_list = []


# Define Entries of the columns after the Value-Column
# --- Entries need to be latex code
col_4 = []

# contains all lists of columns after the FIX ENTRIES
# --- Empty list, if there are no columns after the "Value" column
end_columns_list = []

Related Problems:
Extensive Material:
Download pdf
Result: Success.
Last Build: Checkout CI Build
Runtime: 6.3 (estimated: 10s)